China takes lead in quantum security…

https://www.scientificamerican.com/article/china-shatters-ldquo-spooky-action-at-a-distance-rdquo-record-preps-for-quantum-internet/

In a landmark study, a team of Chinese scientists using an experimental satellite has tested quantum entanglement over unprecedented distances, beaming entangled pairs of photons to three ground stations across China—each separated by more than 1,000 kilometers. The test verifies a mysterious and long-held tenet of quantum theory, and firmly establishes China as the frontrunner in a burgeoning “quantum space race” to create a secure, quantum-based global communications network—that is, a potentially unhackable “quantum internet” that would be of immense geopolitical importance. The findings were published Thursday in Science.
“China has taken the leadership in quantum communication,” says Nicolas Gisin, a physicist at the University of Geneva who was not involved in the study. “This demonstrates that global quantum communication is possible and will be achieved in the near future.”
The concept of quantum communications is considered the gold standard for security, in part because any compromising surveillance leaves its imprint on the transmission. Conventional encrypted messages require secret keys to decrypt, but those keys are vulnerable to eavesdropping as they are sent out into the ether. In quantum communications, however, these keys can be encoded in various quantum states of entangled photons—such as their polarization—and these states will be unavoidably altered if a message is intercepted by eavesdroppers. Ground-based quantum communications typically send entangled photon pairs through fiber-optic cables, or through the open air. But collisions with ordinary atoms along the way disrupt the photons’ delicate quantum states, limiting transmission distances to a few hundred kilometers. Sophisticated devices called “quantum repeaters”—equipped with “quantum memory” modules—could in principle be daisy-chained together to receive, store and retransmit the quantum keys across longer distances, but this task is so complex and difficult that such systems remain largely theoretical.