Big read. Future of work…

http://www.mckinsey.com/global-themes/employment-and-growth/technology-jobs-and-the-future-of-work
The development of automation enabled by technologies including robotics and artificial intelligence brings the promise of higher productivity (and with productivity, economic growth), increased efficiencies, safety, and convenience. But these technologies also raise difficult questions about the broader impact of automation on jobs, skills, wages, and the nature of work itself.
We find that about 60 percent of all occupations have at least 30 percent of activities that are technically automatable, based on currently demonstrated technologies. This means that most occupations will change, and more people will have to work with technology. Highly skilled workers working with technology will benefit. While low-skilled workers working with technology will be able to achieve more in terms of output and productivity, these workers may experience wage pressure, given the potentially larger supply of similarly low-skilled workers, unless demand for the occupation grows more than the expansion in labor supply.

On a global scale, we calculate that the adaptation of currently demonstrated automation technologies could affect 50 percent of the world economy, or 1.2 billion employees and $14.6 trillion in wages. Just four countries—China, India, Japan, and the United States—account for just over half of these totals. There are sizable differences in automation potential between countries, based mainly on the structure of their economies, the relative level of wages, and the size and dynamics of the workforce.

As machines evolve and acquire more advanced performance capabilities that match or exceed human capabilities, the adoption of automation will pick up. However, the technical feasibility to automate does not automatically translate into the deployment of automation in the workplace and the automation of jobs. Technical potential is only the first of several elements that must be considered. A second element is the cost of developing and deploying both the hardware and the software for automation. The supply-and-demand dynamics of labor are a third factor: if workers with sufficient skills for the given occupation are in abundant supply and significantly less expensive than automation, this could slow the rate of adoption. A fourth to be considered are the benefits of automation beyond labor substitution—including higher levels of output, better quality and fewer errors, and capabilities that surpass human ability.

Even while technologies replace some jobs, they are creating new work in industries that most of us cannot even imagine, and new ways to generate income. One-third of new jobs created in the United States in the past 25 years were types that did not exist, or barely existed, in areas including IT development, hardware manufacturing, app creation, and IT systems management. The net impact of new technologies on employment can be strongly positive. A 2011 study by McKinsey’s Paris office found that the Internet had destroyed 500,000 jobs in France in the previous 15 years—but at the same time had created 1.2 million others, a net addition of 700,000, or 2.4 jobs created for every job destroyed. The growing role of big data in the economy and business will create a significant need for statisticians and data analysts; we estimate a shortfall of up to 250,000 data scientists in the United States alone in a decade.