Nothing happening here… just quantum teleportation…

Teleportation is a building block for a wide range of technologies. “Long-distance teleportation has been recognized as a fundamental element in protocols such as large-scale quantum networks and distributed quantum computation,” says the Chinese team.

In theory, there should be no maximum distance over which this can be done. But entanglement is a fragile thing because photons interact with matter in the atmosphere or inside optical fibers, causing the entanglement to be lost.

As a result, the distance over which scientists have measured entanglement or performed teleportation is severely limited. “Previous teleportation experiments between distant locations were limited to a distance on the order of 100 kilometers, due to photon loss in optical fibers or terrestrial free-space channels,” says the team.

But Micius changes all that because it orbits at an altitude of 500 kilometers, and for most of this distance, any photons making the journey travel through a vacuum. To minimize the amount of atmosphere in the way, the Chinese team set up its ground station in Ngari in Tibet at an altitude of over 4,000 meters. So the distance from the ground to the satellite varies from 1,400 kilometers when it is near the horizon to 500 kilometers when it is overhead.

To perform the experiment, the Chinese team created entangled pairs of photons on the ground at a rate of about 4,000 per second. They then beamed one of these photons to the satellite, which passed overhead every day at midnight. They kept the other photon on the ground.

Finally, they measured the photons on the ground and in orbit to confirm  that entanglement was taking place, and that they were able to teleport photons in this way. Over 32 days, they sent millions of photons and found positive results in 911 cases. “We report the first quantum teleportation of independent single-photon qubits from a ground observatory to a low Earth orbit satellite—through an up-link channel— with a distance up to 1400 km,” says the Chinese team.

This is the first time that any object has been teleported from Earth to orbit, and it smashes the record for the longest distance for entanglement.

That’s impressive work that sets the stage for much more ambitious goals in the future. “This work establishes the first ground-to-satellite up-link for faithful and ultra-long-distance quantum teleportation, an essential step toward global-scale quantum internet,” says the team.

It also shows China’s obvious dominance and lead in a field that, until recently, was led by Europe and the U.S.—Micius would surely have been impressed. But an important question now is how the West will respond.

Ref: arxiv.org/abs/1707.00934: Ground-to-satellite quantum teleportation