Erasing memories… sci-fi gets closer.

The eternal sunshine of a spotless mind has come one step closer, say researchers working on methods to erase memories of fear.
The latest study, carried out in mice, unpicks why certain sounds can stir alarming memories, and reveals a new approach to wiping such memories from the brain.

The researchers say the findings could be used to either weaken or strengthen particular memories while leaving others unchanged. That, they say, could potentially be used to help those with cognitive decline or post-traumatic stress disorder by removing fearful memories while retaining useful ones, such as the sound of a dog’s bark.

“We can use same approach to selectively manipulate only the pathological fear memory while preserving all other adaptive fear memories which are necessary for our daily lives,” said Jun-Hyeong Cho, co-author of the research from the University of California, Riverside.
The research is the latest in a string of studies looking at ways to erase unpleasant memories, with previous work by scientists exploring techniques ranging from brain scans and AI to the use of drugs.
Published in the journal Neuron by Cho and his colleague Woong Bin Kim, the research reveals how the team used genetically modified mice to examine the pathways between the area of the brain involved in processing a particular sound and the area involved in emotional memories, known as the amygdala.

“These mice are special in that we can label or tag specific pathways that convey certain signals to the amygdala, so that we can identify which pathways are really modified as the mice learn to fear a particular sound,” said Cho. “It is like a bundle of phone lines,” he added. “Each phone line conveys certain auditory information to the amygdala.”

In the first part of the experiment the team played both a high pitched and low-pitched tone to mice. But, when the high-pitched sound was played, the researchers also gave the mice a small electric shock to their feet. 
When the high-pitched tone was subsequently played on its own, the mice froze in fear; no such response was seen when the alternative, low-pitched, tone was played.
The team then looked to see if there were differences between the high-pitch and low-pitch tone pathways in the brains of the mice, revealing that, among the mice exposed electric shocks, the connections within the “high-pitched” pathway had become stronger, while the other pathway remained unchanged.

https://www.theguardian.com/science/2017/aug/17/memories-of-fear-could-be-permanently-erased-study-shows